Process & Process Descriptor (PCB)

Contents of a descriptor maps directly to the Abstract Machine

provided by the OS

Static variables

FIGURE 2.4
UNIX Processes

e Dynamically allocated variables

e Runtime stack

e

Data

Stack

Code
\.. T e e b
T
% Text
*j‘i;.éf' Process Status
N
PC, status,

exec time priority

Interface provided by OS

TR

Files

Abstract Machine Environment

CS 3204: Operating Systems

B

Resources

g

s

Tape drive,
e

— ﬁ-/ memory
...%.ﬁ zﬁ{w

=

R

Files, etc.

One Program / Multiple Instantiations

Sequential Operation

Trace for P1
Distinct Trace for P2
execution paths X Trace for P3 _
\ Note:
—~ pC? SR Each Process has its
& own descriptor
* - text (shared), data...
Only one process
HEOcERR S active at a time
Shared Program Text promes (Context SW|tch|ng)
; B

e P
P

Process 3

CS 3204: Operating Systems 2

UNIX Parent and Child Processes

Child processes

e e e
o 5 :_'?-e]
i : ot i
O e e e
. ¢] i
2 i :_-?‘.{ b
B : |-] i
s gnEET s conn Y
7 | i
b

T e D

Shared Files
& Resources

Shared
Program Text

Parent process

CS 3204: Operating Systems

Thread (Child Process)

Thread: light-weight process
= OS maintains minimal internal state information

Usually instantiated from a process

Each thread has its OWN unique descriptor
= Stack, Thread Status Word (TSW)

SHARES with the parent process (and other threads)
= Program text
= Files & Resources
» Parent process data segment

CS 3204: Operating Systems

Thread

Unique for each thread

A Process and a Family of Threads

Minimal info

g => Light-weight

Thread

Each thread is e——
sharing/executing the L Thread Status VR
EXACT same code

_ |Program

Text Dala

3«23&»&&«? k‘*‘\’-\% \

CE R S P
P e o

PI’OCCS% c‘.rtEltL]"-i

Hv::avywe]ght Pmccsij

Shared componeV

Only 1 copy of
descriptor in OS

CS 3204: Operating Systems

Process creation - fork()... example

int pidvalue;

pidvalue = fork(Q); /* creates a child process
IT(pidvalue == 0) {
/* pidvalue 1s ZERO for child, nonzero for parent
/* The child executes this code concurrently with Parent
childsPlay(..); /* A locally-liked procedure
exit(0); /* Terminate the child
+

/* The Parent executes this code concurrently with the child

wait(..); /* Parent waits for Child’s to terminate

*/

*/

*/

*/

*/

*/

*/

UNIX process creation : fork() facility

CS 3204: Operating Systems

Process creation — Unix fork()...

Child/Parent code executed based on the pid value in “local” data
space
= For parent process, pid value returned is that of the cAi/d (non-zero)
= For child process, pid value returned is O

pidvalue returned to parent process is non-Zero

Therefore, fork() creates a new LW process

Parent process (HW)
Q fork()
Q Child process (LW)

Initial process

CS 3204: Operating Systems 7

Process Creation — Unix exec()

m Turns LW process into autonomous HW process

n fork()

= Creates new process

n exec()
= Brings in new program to be executed by that process

= New text, data, stack, resources, PSW, etc.
BUT using same (expanded) process descriptor entries

In effect, the “exec’ed” code overlays “exec’ing” code

CS 3204: Operating Systems

Process creation — exec()... example

int pid;
/* Setup the argv array for the child */
1T((pid = fork()) == 0) { /* Create a child
/* The child process executes changes to i1ts own program
execve(new_program.out , argv , 0);
/*0nly return from an execve call 1f 1t fails
printf(“Error in execve™);
exit(0); /* Terminate the child
}
/* Parent executes this code */
wait(..); /* Parent waits for Child’s to terminate

*/
*/

*/

*/

*/

UNIX process creation: exec() facility

CS 3204: Operating Systems

